Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Adv Mater ; : e2400783, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607655

RESUMO

Halide perovskites have shown great potential in X-ray detection due to outstanding optoelectronic properties. However, finding a cost-effective and environmentally sustainable method for handling end-of-life devices has remained challenging. Here, a "One-Click Restart" eco-friendly recycling strategy is introduced for end-of-life perovskite X-ray detectors. This method, utilizing water, allows for the recapture and reuse of both perovskite and conductor materials. The process is straightforward and environmentally friendly, eliminating the need for further chemical treatment, purification, additional additives or catalysts, and complex equipment. A sustainable device cycle is developed by reconstructing flexible perovskite membranes for wearable electronics from recycled materials. Large-scale, flexible membranes made from metal-free perovskite DABCO-N2H5-I3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium) achieve remarkably impressive average sensitivity of 6204 ± 268 µC Gyair -1 cm-2 and a low detection limit of 102.3 nGyair s-1, which makes highly effective for X-ray imaging. The sensitivity of recycled flexible devices not only matches that of single-crystal devices made with fresh materials but also ranks as the highest among all metal-free perovskite X-ray detectors. "One-Click Restart" applies to scalable flexible devices derived from aged single-crystal counterparts, offering significant cost, time, and energy savings compared to their single-crystal equivalents. Such advantages significantly boost future market competitiveness.

2.
J Orthop Surg Res ; 19(1): 231, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589910

RESUMO

BACKGROUND: Internal and external fixation are common surgical procedures for treating fractures. However, the impact of different surgical approaches (including internal and external fixations) on patients' psychological status and Quality of Life (QoL) is rarely examined. Herein, we aimed to investigate the effects of internal and external fixation on anxiety, depression, insomnia, and overall mental and physical health in Distal Radius Fractures (DRF) patients. METHODS: We performed a retrospective study on 96 fracture patients who underwent internal fixation (57 patients) or external fixation (39 patients). The Visual Analog Scale (VAS), the Hospital Anxiety and Depression Scale (HADS), the Athens Insomnia Scale (AIS), and the Medical Outcomes Study Short Form 36 (SF-36) questionnaire were used to assess the patients' pain, anxiety, depression, sleep, and QoL before surgery and at seven days, one month, and three months post-surgery. RESULTS: The VAS scores were significantly lower in the Internal Fixation Group (IFG) than in the External Fixation Group (EFG) on the seventh day and one month postoperatively (P < 0.05). Although both groups showed no significant anxiety, depression, or insomnia before surgery (P > 0.05), the EFG showed significantly higher HADS-A, HADS-D, and AIS scores than the IFG at seven days and one and three months postoperatively (P < 0.05). Additionally, changes in HADS-A, HADS-D, and AIS scores were most significant at day seven post-surgery in the EFG (P < 0.05). Furthermore, no significant difference was found between the two groups in the average Physical Component Summary (PCS) and Mental Component Summary (MCS) scores before surgery (P > 0.05). However, both groups showed positive changes in PCS and MCS scores at postoperative day seven and one and three months postoperatively, with the IFG having significantly higher average PCS and MCS scores compared to the EFG (P < 0.05). CONCLUSION: Compared to external fixation, internal fixation did not significantly impact patients' emotions regarding anxiety and depression in the early postoperative period, and physical and mental health recovery was better during the postoperative rehabilitation period. Furthermore, when there are no absolute indications, the impact on patients' psychological well-being should be considered as one of the key factors in the treatment plan during surgical approach selection.


Assuntos
Fraturas Ósseas , Distúrbios do Início e da Manutenção do Sono , Humanos , Qualidade de Vida , Distúrbios do Início e da Manutenção do Sono/etiologia , Fixadores Externos , Estudos Retrospectivos , Fixação de Fratura/efeitos adversos , Fixação Interna de Fraturas/efeitos adversos , Fenômenos Físicos
3.
Endokrynol Pol ; 75(1): 20-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497386

RESUMO

INTRODUCTION: Papillary thyroid cancer (PTC) is a common malignant tumour in the endocrine system with increasing incidence. LncRNA HCG22 (HCG22) was noticed to be dysregulated in PTC, but its specific function and mechanism remain unknown. The function of HCG22 and its underlying molecular mechanism was investigated to evaluate its potential as a biomarker for PTC. MATERIAL AND METHODS: The expression of HCG22 was detected in PTC cells (TPC-1, SNU790, GLAG-66, and BCPAP) and normal thyroid cells (Nthy-ori) using real time quantative polymerase chain reaction (RT-qPCR). HCG22 and miR-425-5p were regulated by cell transfection. The cell proliferation and metastasis were assessed by CCK8 and Transwell assay. RESULTS: HCG22 was upregulated in PTC cells, of which the knockdown suppressed the proliferation, migration, and invasion of PTC cells. miR-425-5p was downregulated in PTC cells, which was negatively regulated by HCG22. Silencing miR-425-5p could reverse the inhibitory effect of HCG22 knockdown on the cellular processes of PTC. CONCLUSIONS: HCG22 served as a tumour promoter in PTC cells, which regulated cell proliferation and metastasis via negatively regulating miR-425-5p.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
4.
ACS Appl Mater Interfaces ; 16(13): 16300-16308, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513050

RESUMO

Halide perovskites are emerging as promising materials for X-ray detection owing to their compatibility with flexible fabrication, cost-effective solution processing, and exceptional carrier transport behaviors. However, the challenge of removing lead from high-performing perovskites, crucial for wearable electronics, while retaining their superior performance, persists. Here, we present for the first time a highly sensitive and robust flexible X-ray detector utilizing a biocompatible, metal-free perovskite, MDABCO-NH4I3 (MDABCO = methyl-N'-diazabicyclo[2.2.2]octonium). This wearable X-ray detector, based on a MDABCO-NH4I3 thick membrane, exhibits remarkable properties including a large resistivity of 1.13 × 1011 Ω cm, a high mobility-lifetime product (µ-τ) of 1.64 × 10-4 cm2 V-1, and spin Seebeck effect coefficient of 1.9 nV K-1. We achieve a high sensitivity of 6521.6 ± 700 µC Gyair-1 cm-2 and a low detection limit of 77 nGyair s-1, ranking among the highest for biocompatible X-ray detectors. Additionally, the device exhibits effective X-ray imaging at a low dose rate of 1.87 µGyair s-1, which is approximately one-third of the dose rate used in regular medical diagnostics. Crucially, both the MDABCO-NH4I3 thick membrane and the device showcase excellent mechanical robustness. These attributes render the flexible MDABCO-NH4I3 thick membranes highly competitive for next-generation, high-performance, wearable X-ray detection applications.

5.
Plant Physiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428981

RESUMO

N 6-methyladenosine (m6A), which is the mostly prevalent modification in eukaryotic mRNAs, is involved in gene expression regulation and many RNA metabolism processes. Accurate prediction of m6A modification is important for understanding its molecular mechanisms in different biological contexts. However, most existing models have limited range of application and are species-centric. Here we present PEA-m6A, a unified, modularized and parameterized framework that can streamline m6A-Seq data analysis for predicting m6A-modified regions in plant genomes. The PEA-m6A framework builds ensemble learning-based m6A prediction models with statistic-based and deep learning-driven features, achieving superior performance with an improvement of 6.7% ∼ 23.3% in the area under precision-recall curve (PRC) compared with state-of-the-art regional-scale m6A predictor WeakRM in 12 plant species. Especially, PEA-m6A is capable of leveraging knowledge from pre-trained models via transfer learning, representing an innovation in that it can improve prediction accuracy of m6A modifications under small-sample training tasks. PEA-m6A also has a strong capability for generalization, making it suitable for application in within- and cross-species m6A prediction. Overall, this study presents a promising m6A prediction tool, PEA-m6A, with outstanding performance in terms of its accuracy, flexibility, transferability and generalization ability. PEA-m6A has been packaged using Galaxy and Docker technologies for ease of use and is publicly available at https://github.com/cma2015/PEA-m6A.

6.
Nanotechnology ; 35(26)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38527361

RESUMO

Conjugated polymer-based organic/inorganic hybrid materials become the current research frontier and show great potential to integrate flexible polymers and rigid solid materials, which have been widely used in the field of various flexible electronics and optical devices. In this study, based on the multiple vapor phase infiltration (VPI) process, various precursor molecules (diethylzinc DEZ, trimethylaluminum TMA, H2O) are applied for thein situmodification of PBTTT-C14 films. The conductivity of the PBTTT-C14/Al2O3:ZnO (AZO) film is significantly enhanced, and the maximum value of conductivity is 1.16 S cm-1, which is eight orders of magnitude higher than the undoped PBTTT-C14 thin film. Here, the change of morphologies and crystalline states are analyzed via SEM, AFM, and XRD. And the chemical changes during the VPI process of PBTTT-C14 are characterized through Raman, XPS, and UV-vis. During the AZO VPI process, the formation of new ZnS matrix in the polymer subsurface can generate new additional electron conduction pathways through the crosslinking of polymer chains with inorganic materials, and the addition of Al2O3can bring about the increase of average grain size of ZnO crystals, which is also benefit to the conductivity increase of PBTTT-C14 thin film. Generally, the synergistic effect between the inorganic and polymer constituents results in the significantly enhancement of the conductivity of PBTTT-C14/AZO thin films.

7.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334522

RESUMO

The progress in artificial bone research is crucial for addressing fractures and bone defects in the aging population. However, challenges persist in terms of biocompatibility and structural complexity. Nanotechnology provides a promising avenue by which to overcome these challenges, with nano-ferrite particles (NFPs) exhibiting superparamagnetic properties. The ability to control cell positioning using a magnetic field opens up new possibilities for customizing artificial bones with specific shapes. This study explores the biological effects of NFPs on osteoblast-like cell lines (MC3T3-E1), including key analyses, such as cell viability, cellular uptake of NFPs, calcification processes, cell migration under external magnetic field conditions, and three-dimensional modeling. The results indicate that the impact of NFPs on cell proliferation is negligible. Fluorescence and transmission electron microscopy validated the cellular uptake of NFPs, demonstrating the potential for precise cell positioning through an external magnetic field. Under calcification-inducing conditions, the cells exhibited sustained calcification ability even in the presence of NFPs. The cell movement analysis observed the controlled movement of NFP-absorbing cells under an external magnetic field. Applying a magnetic field along the z-axis induced the three-dimensional shaping of cells incorporating NFPs, resulting in well-arranged z-axis directional patterns. In this study, NFPs demonstrated excellent biocompatibility and controllability under an external magnetic field, laying the foundation for innovative treatment strategies for customizing artificial bones.

8.
Sci Rep ; 14(1): 4962, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424121

RESUMO

Microplastics are exotic pollutants and are increasingly detected in soil, but it remains poorly understood how microplastics impact soil and plant systematically. The present study was conducted to evaluate the effects of polyvinyl chloride microplastics (PVC-MPs) on wheat seedlings performance and soil properties. Under the stress of PVC-MPs, no new substance and functional groups were generated in soil by X-ray diffraction and the fourier transform infrared spectroscopy analyses, whereas the diffraction and characteristic peaks and of soil was affected by PVC-MPs. Wheat seedlings shoot biomass and soil nitrate nitrogen were significantly inhibited by PVC-MPs. Chlorophylls were not significant affected by PVC-MPs. Superoxide dismutase, catalase, and peroxidase activities in wheat seedlings increased, while malondialdehyde and proline contents decreased significantly. Redundancy analysis displayed that wheat seedlings traits can be largely explained by soil nitrate nitrogen. Our results indicate that PVC-MPs have more significant influence on soil structure than on soil substance composition. Moreover, even though antioxidant enzyme activities were improved to respond the stress of PVC-MPs, wheat seedlings are not severely impacted by PVC-MPs. Besides, soil nitrate nitrogen is the main factor on wheat seedlings performance and wheat seedlings are prone to ensure the root growth under the stress of PVC-MPs.


Assuntos
Microplásticos , Plásticos , Plásticos/farmacologia , Triticum , Nitratos/farmacologia , Plântula , Cloreto de Polivinila , Solo/química , Antioxidantes/farmacologia
9.
Sci Total Environ ; 917: 170428, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286275

RESUMO

The lack of one-to-one olfactory thresholds (OTs) poses an obstacle to the comprehensive assessment of priority odorants emitted from swine slurry using mass spectrometric nontarget screening. This study screened out highly performing quantitative structure-activity relationship (QSAR) models of OT prediction to complement nontarget screening in olfactory perception evaluation. A total of 27 compounds emitted at different slurry removal frequencies were identified and quantified using gas chromatography-mass spectrometry (GC-MS), including thiirane, dimethyl trisulfide (DMTS), and dimethyl tetrasulfide (DMQS) without OT records. Ridge regression (RR, R2 = 0.77, RMSE = 0.93, MAE = 0.73) and random forest regression (RFR, R2 = 0.76, RMSE = 0.97, MAE = 0.69) rather than the commonly used principal component regression (PCR) and partial least squares regression (PLSR) were used to assign OTs and assess the contributions of emerging volatile sulfur compounds (VSCs) to the sum of odor activity value (SOAV). Priority odorants were p-cresol (25.0-58.9 %) > valeric acid (8.3-31.7 %) > isovaleric acid (6.7-19.0 %) > dimethyl disulfide (4.7-15.7 %) > methanethiol (0-13.6 %) > isobutyric acid (0-8.6 %), whereas the contributions of three emerging VSCs were below 10 %. Vital olfactory active structures were identified by QSAR models as having high molecular polarity, high hydrophilicity, high charge quantity, flexible structure, high reactivity, and a high number of sulfur atoms. This protocol can be further extended to evaluate odor pollution levels for distinct odor sources and guide the development of pertinent deodorization technologies.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Suínos , Odorantes/análise , Compostos de Enxofre , Olfato , Enxofre , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
10.
Adv Mater ; 36(9): e2307583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37824785

RESUMO

The critical requirement for ambient-printed formamidinium lead iodide (FAPbI3 ) lies in the control of nucleation-growth kinetics and defect formation behavior, which are extensively influenced by interactions between the solvent and perovskite. Here, a strategy is developed that combines a cosolvent and an additive to efficiently tailor the coordination between the solvent and perovskite. Through in situ characterizations, the direct crystallization from the sol-gel phase to α-FAPbI3 is illustrated. When the solvent exhibits strong interactions with the perovskite, the sol-gel phases cannot effectively transform into α-FAPbI3 , resulting in a lower nucleation rate and confined crystal growth directions. Consequently, it becomes challenging to fabricate high-quality void-free perovskite films. Conversely, weaker solvent-perovskite coordination promotes direct crystallization from sol-gel phases to α-FAPbI3 . This process exhibits more balanced nucleation-growth kinetics and restrains the formation of defects and microstrains in situ. This strategy leads to improved structural and optoelectronic properties within the FAPbI3 films, characterized by more compact grain stacking, smoother surface morphology, released lattice strain, and fewer defects. The ambient-printed FAPbI3 perovskite solar cells fabricated using this strategy exhibit a remarkable power conversion efficiency of 24%, with significantly reduced efficiency deviation and negligible decreases in the stabilized output.

11.
Ecotoxicol Environ Saf ; 269: 115739, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016191

RESUMO

The root-associated microbiome assembly substantially promotes (hyper)accumulator plant growth and metal accumulation and is influenced by multiple factors, especially host species and environmental stress. Athyrium wardii (Hook.) is a phytostabilizer that grows in lead (Pb)-zinc (Zn) mine tailings and shows high root Pb accumulation. However, there remains little information on the assembly of the root-associated microbiome of A. wardii and its role in phytostabilization. A field study investigated the structural and functional variation in the root-associated bacterial microbiome of Athyrium wardii (Hook.) exposed to different levels of contamination in Pb-Zn mine tailings. The root compartment dominated the variation in the root-associated bacterial microbiome but the levels of contaminants showed less impact. Bacterial co-occurrence was enhanced in the rhizosphere soil and rhizoplane but tended to be much simpler in the endosphere in terms of network complexity and connectivity. This indicates that the microbial community assembly of A. wardii was non-random and shaped by root selective effects. Proteobacteria, Chloroflexi, Actinobacteria, Cyanobacteria, and Acidobacteriota were generally the dominant bacterial phyla. The genera Crossiella and Bradyrhizobium were enriched in the rhizosphere and cyanobacterial genera were enriched in the endosphere, demonstrating substantial advantages to plant survival and adaptation in the harsh mine environment. Functional categories involved in amino acid and carbohydrate metabolism were abundant in the rhizosphere soil, thus contributing to metal solubility and bioavailability in the rhizosphere. Membrane transporters, especially ATP-binding cassette transporters, were enriched in the endosphere, indicating a potential role in metal tolerance and transportation in A. wardii. The study shows substantial variation in the structure and function of microbiomes colonizing different compartments, with the rhizosphere and endophytic microbiota potentially involved in plant metal tolerance and accumulation during phytostabilization.


Assuntos
Microbiota , Traqueófitas , Chumbo/toxicidade , Chumbo/metabolismo , Plantas , Bactérias , Zinco/toxicidade , Zinco/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Microbiologia do Solo
12.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995323

RESUMO

The advent of high-throughput sequencing technologies has led to the production of a significant amount of omics data in plants, which serves as valuable assets for conducting cross-species multi-omics comparative analysis. Nevertheless, the current dearth of comprehensive platforms providing evolutionary annotation information and multi-species multi-omics data impedes users from systematically and efficiently performing evolutionary and functional analysis on specific genes. In order to establish an advanced plant multi-omics platform that provides timely, accurate, and high-caliber omics information, we collected 7 distinct types of omics data from 6 monocots, 6 dicots, and 1 moss, and reanalyzed these data using standardized pipelines. Additionally, we furnished homology information, duplication events, and phylostratigraphic stages of 13 species to facilitate evolutionary examination. Furthermore, the integrative plant omics platform (IPOP) is bundled with a variety of online analysis tools that aid users in conducting evolutionary and functional analysis. Specifically, the Multi-omics Integration Analysis tool is available to consolidate information from diverse omics sources, while the Transcriptome-wide Association Analysis tool facilitates the linkage of functional analysis with phenotype. To illustrate the application of IPOP, we conducted a case study on the YTH domain gene family, wherein we observed shared functionalities within orthologous groups and discerned variations in evolutionary patterns across these groups. To summarize, the IPOP platform offers valuable evolutionary insights and multi-omics data to the plant sciences community, effectively addressing the need for cross-species comparison and evolutionary research platforms. All data and modules within IPOP are freely accessible for academic purposes (http://omicstudio.cloud:4012/ipod/).


Assuntos
Multiômica , Plantas , Plantas/genética , Evolução Biológica , Perfilação da Expressão Gênica , Fenótipo
13.
Chem Sci ; 14(44): 12676-12683, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020394

RESUMO

An unprecedented nickel-catalysed enantioselective hydromonofluoromethylation of 1,3-enynes is developed, allowing the diverse access to monofluoromethyl-tethered axially chiral allenes, including the challenging deuterated monofluoromethyl (CD2F)-tethered ones that are otherwise inaccessible. It represents the first asymmetric 1,4-hydrofunctionalization of 1,3-enynes using low-cost asymmetric nickel catalysis, thus opening a new avenue for the activation of 1,3-enynes in reaction development. The utility is further verified by its broad substrate scope, good functionality tolerance, mild conditions, and diversified product elaborations toward other valuable fluorinated structures. Mechanistic experiments and DFT calculations provide insights into the reaction mechanism and the origin of the enantioselectivity.

14.
J Orthop Surg Res ; 18(1): 889, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993906

RESUMO

BACKGROUND: Treating long bone defects of the extremities caused by trauma, infection, tumours, and nonunion has been challenging for clinical orthopaedic surgeons. Bone transport techniques have the potential to treat bone defects. However, inevitable docking site complications related to bone transport techniques have been reported in many studies. The purpose of this study was to investigate the risk factors associated with docking site complications in patients who underwent the Ilizarov bone transport technique for the treatment of tibial bone defects. METHODS: This retrospective study included 103 patients who underwent bone transport for the treatment of large bone defects in the tibia from October 2012 to October 2019. Patient demographic data, complications and clinical outcomes after a minimum of 2 years of follow-up were collected and retrospectively analysed. Additionally, univariate analysis and logistic regression analysis were used to analyse the factors that may affect the development of docking site complications in patients with tibial bone defects treated with the Ilizarov bone transport technique. The clinical outcomes were evaluated using the Association for the Study and Application of the Ilizarov criteria (ASAMI) at the last clinical follow-up. RESULTS: All 103 patients with an average follow-up of 27.5 months. The docking site complications rate per patient was 0.53, and delayed union occurred in 22 cases (21.4%), axial deviation occurred in 19 cases (18.4%) and soft tissue incarceration occurred in 10 cases (9.7%). According to the results of the logistic regression analysis, the bone defect length (P = 0.001, OR = 1.976), and bone defect of distal 1/3 (P = 0.01, OR = 1.976) were significantly correlated with delayed union. Bone defect length (P < 0.001, OR = 1.981) and external fixation time (P = 0.012, OR = 1.017) were significantly correlated with axial deviation. Soft tissue defects (P = 0.047, OR = 6.766) and the number of previous operations (P = 0.001, OR = 2.920) were significantly correlated with soft tissue incarceration. The ASAMI bone score at the last follow-up showed a rate of excellent and good bone results of 95.1% and a rate of excellent functional results of 90.3%. CONCLUSION: The Ilizarov bone transport technique is a practical and effective method for the treatment of tibial bone defects. However, the incidence of complications at the docking site is high, of which bone defect length, external fixation time, the number of previous operations, soft tissue defects and the bone defect of distal 1/3 are statistically significantly associated with the occurrence of docking site complications.


Assuntos
Técnica de Ilizarov , Fraturas da Tíbia , Humanos , Tíbia/cirurgia , Tíbia/lesões , Estudos Retrospectivos , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Fraturas da Tíbia/etiologia , Técnica de Ilizarov/efeitos adversos , Resultado do Tratamento , Fixadores Externos
15.
Phys Rev E ; 108(3-1): 034304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849195

RESUMO

The challenging problem of network reconstruction from dynamical data can in general be formulated as an optimization task of solving multiple linear equations. Existing approaches are of the two types: Point-by-point (PBP) and global methods. The local PBP method is computationally efficient, but the accuracies of its solutions are somehow low, while a global method has the opposite traits: High accuracy and high computational cost. Taking advantage of the network symmetry, we develop a novel framework integrating the advantages of both the PBP and global methods while avoiding their shortcomings: i.e., high reconstruction accuracy is guaranteed, but the computational cost is orders of magnitude lower than that of the global methods in the literature. The mathematical principle underlying our framework is block coordinate descent (BCD) for solving optimization problems, where the various blocks are determined by the network symmetry. The reconstruction framework is validated by numerical examples with a variety of network structures (i.e., sparse and dense networks) and dynamical processes. Our success is a demonstration that the general principle of exploiting symmetry can be extended to tackling the challenging inverse problem or reverse engineering of complex networks. Since solving a large number of linear equations is key to a plethora of problems in science and engineering, our BCD-based network reconstruction framework will find broader applications.

16.
BMC Infect Dis ; 23(1): 645, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784034

RESUMO

BACKGROUND: Human hydatid disease typically occurs in organs such as the liver and kidney. Primary solitary intramuscular hydatid disease, however, is rare. CASE PRESENTATION: We report a case of a giant muscle hydatid in the lower extremity, with neurological symptoms as the first manifestation. The symptoms specifically manifested as intermittent pain in the right lower extremity and numbness in the sole of the right foot. However, there were no obvious abnormalities detected in electromyography and lumbar MRI. Subsequent ultrasonography and calf MRI showed that the patient had cystic lesions in the calf. The patient was initially diagnosed with a muscle hydatid cyst. Treatment involved complete surgical excision of the lesion, and the diagnosis of a hydatid cyst was confirmed through macroscopic and microscopic histopathological examination after the mass was excised. The patient was given oral albendazole, and no recurrence was observed during the 12 months of follow-up. CONCLUSIONS: This case underscores the need to consider hydatid disease when diagnosing soft tissue masses in muscles, particularly in endemic areas. Patients may initially present with atypical symptoms like peripheral nerve issues.


Assuntos
Equinococose , Echinococcus , Animais , Humanos , Equinococose/patologia , Albendazol/uso terapêutico , Músculos/patologia , Extremidade Inferior/patologia
17.
BMC Plant Biol ; 23(1): 456, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770861

RESUMO

BACKGROUND: N6-methyladenosine (m6A) modification is the most abundant type of RNA modification in eukaryotic cells, playing pivotal roles in multiple plant growth and development processes. Yet the potential role of m6A in conferring the trait of male sterility in plants remains unknown. RESULTS: In this study, we performed RNA-sequencing (RNA-Seq) and m6A-sequencing (m6A-Seq) of RNAs obtained from the anther tissue of two wolfberry lines: 'Ningqi No.1' (LB1) and its natural male sterile mutant 'Ningqi No.5' (LB5). Based on the newly assembled transcriptome, we established transcriptome-wide m6A maps for LB1 and LB5 at the single nucleus pollen stage. We found that the gene XLOC_021201, a homolog of m6A eraser-related gene ALKBH10 in Arabidopsis thaliana, was significantly differentially expressed between LB1 and LB5. We also identified 1642 and 563 m6A-modified genes with hypermethylated and hypomethylated patterns, respectively, in LB1 compared with LB5. We found the hypermethylated genes significantly enriched in biological processes related to energy metabolism and lipid metabolism, while hypomethylation genes were mainly linked to cell cycle process, gametophyte development, and reproductive process. Among these 2205 differentially m6A methylated genes, 13.74% (303 of 2205) were differentially expressed in LB1 vis-à-vis LB5. CONCLUSIONS: This study constructs the first m6A transcriptome map of wolfberry and establishes an association between m6A and the trait of male sterility in wolfberry.


Assuntos
Infertilidade Masculina , Lycium , Masculino , Humanos , Perfilação da Expressão Gênica , Lycium/genética , Transcriptoma , RNA , Metilação de DNA/genética , Infertilidade Masculina/genética
18.
Research (Wash D C) ; 6: 0230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719051

RESUMO

Topological data analysis can extract effective information from higher-dimensional data. Its mathematical basis is persistent homology. The persistent homology can calculate topological features at different spatiotemporal scales of the dataset, that is, establishing the integrated taxonomic relation among points, lines, and simplices. Here, the simplicial network composed of all-order simplices in a simplicial complex is essential. Because the sequence of nested simplicial subnetworks can be regarded as a discrete Morse function from the simplicial network to real values, a method based on the concept of critical simplices can be developed by searching all-order spanning trees. Employing this new method, not only the Morse function values with the theoretical minimum number of critical simplices can be obtained, but also the Betti numbers and composition of all-order cavities in the simplicial network can be calculated quickly. Finally, this method is used to analyze some examples and compared with other methods, showing its effectiveness and feasibility.

19.
Adv Mater ; 35(44): e2304809, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669571

RESUMO

The efficiency of metal halide perovskite solar cells (PSCs) has skyrocketed; however, defects created by aging precursor solutions and during crystallization pose a significant barrier to the reproducibility and efficiency of solar cells. In this work, fluoro-N,N,N″,N″-tetramethylformamidinium hexafluorophosphate (F-(CH3 )4 CN2 PF6 , abbreviated as TFFH) is introduced to stabilize precursor solution and improve crystallization dynamics simultaneously for high-performance formamidinium lead iodide (FAPbI3 )-based perovskite indoor photovoltaics. The TFFH stabilizes the precursor solution by inhibiting oxidation of I- and reducing newly generated I0 to I- , and passivates undercoordinated Pb2+ by interacting with the Pb─I framework. Time-resolved optical diagnostics show prolonged perovskite crystallization dynamics and in situ defect passivation due to the presence of strong FA+ ···TFFH···Pb─I interaction. Simultaneous regulation of precursor solution and crystallization dynamics guarantee larger perovskite grain sizes, better crystal orientation, fewer defects and more efficient charge extraction in PSCs. The optimized PSCs achieve improved reproducibility and better stability and reach an efficiency of 42.43% at illumination of 1002 lux, which is the highest efficiency among all indoor photovoltaics. It is anticipated that the concurrent stabilization of solutions and regulation of crystallization dynamics will emerge as a prevalent approach for enhancing the reproducibility and efficiency of perovskite.

20.
Front Plant Sci ; 14: 1207139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600179

RESUMO

Genotype-to-phenotype (G2P) prediction has become a mainstream paradigm to facilitate genomic selection (GS)-assisted breeding in the seed industry. Many methods have been introduced for building GS models, but their prediction precision may vary depending on species and specific traits. Therefore, evaluation of multiple models and selection of the appropriate one is crucial to effective GS analysis. Here, we present the G2P container developed for the Singularity platform, which not only contains a library of 16 state-of-the-art GS models and 13 evaluation metrics. G2P works as an integrative environment offering comprehensive, unbiased evaluation analyses of the 16 GS models, which may be run in parallel on high-performance computing clusters. Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. This functionality should further improve the precision of G2P prediction. Another noteworthy function is the refinement design of the training set, in which G2P optimizes the training set based on the genetic diversity analysis of a studied population. Although the training samples in the optimized set are fewer than in the original set, the prediction precision is almost equivalent to that obtained when using the whole set. This functionality is quite useful in practice, as it reduces the cost of phenotyping when constructing training population. The G2P container and source codes are freely accessible at https://g2p-env.github.io/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA